The multi-symplectic Fourier pseudospectral method for solving two-dimensional Hamiltonian PDEs
نویسندگان
چکیده
منابع مشابه
Multi-symplectic Fourier Pseudospectral Method for the Nonlinear Schrödinger Equation
Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space [4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear Schrödinger equation with periodic boundary conditions ha...
متن کاملEnergy-conserving numerical methods for multi-symplectic Hamiltonian PDEs
In this paper, the discrete gradient methods are investigated for ODEs with first integral, and the recursive formula is presented for deriving the high-order numerical methods. We generalize the idea of discrete gradient methods to PDEs and construct the high-order energypreserving numerical methods for multi-symplectic Hamiltonian PDEs. By integrating nonlinear Schrödinger equation, some nume...
متن کاملMulti-symplectic Fourier Pseudospectral Method for a Higher Order Wave Equation of Kdv Type
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multisymplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of e...
متن کاملA Fourier Pseudospectral Method for Solving Coupled Viscous Burgers Equations
The Fourier pseudo-spectral method has been studied for a onedimensional coupled system of viscous Burgers equations. Two test problems with known exact solutions have been selected for this study. In this paper, the rate of convergence in time and error analysis of the solution of the first problem has been studied, while the numerical results of the second problem obtained by the present meth...
متن کاملAn Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs
In this paper, we develop a novel energy-preserving wavelet collocation method for solving general multi-symplectic formulations of Hamiltonian PDEs. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, the wavelet collocation method is conducted for spatial discretization. The obtained semi-discrete system is shown to be a finite-dimensional Hamiltonian s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2011.08.023